Left cells containing a fully commutative element
نویسندگان
چکیده
منابع مشابه
Left cells containing a fully commutative element
Let W be a finite or an affine Coxeter group and Wc the set of all the fully commutative elements in W . For any left cell L of W containing some fully commutative element, our main result of the paper is to prove that there exists a unique element (say wL) in L ∩ Wc such that any z ∈ L has the form z = xwL with `(z) = `(x) + `(wL) for some x ∈ W . This implies that L is left connected, verifyi...
متن کاملTHE LEFT REGULAR REPRESENTATION OF A COMMUTATIVE SEPARATIVE SEMIGROUP
In this paper, a commutative semigroup will be written as a disjoint union of its cancellative subsemigroups. Based on this fact we will define the left regular representation of a commutative separative semigroup and show that this representation is faithful. Finally concrete examples of commutative separative semigroups, their decompositions and their left regular representations are given.
متن کاملthe left regular representation of a commutative separative semigroup
in this paper, a commutative semigroup will be written as a disjoint :union: of its cancellative subsemigroups. based on this fact we will define the left regular representation of a commutative separative semigroup and show that this representation is faithful. finally concrete examples of commutative separative semigroups, their decompositions and their left regular representations are given.
متن کاملFully commutative elements and lattice walks
An element of a Coxeter group W is fully commutative if any two of its reduced decompositions are related by a series of transpositions of adjacent commuting generators. These elements were extensively studied by Stembridge in the finite case. In this work we deal with any finite or affine Coxeter group W , and we enumerate fully commutative elements according to their Coxeter length. Our appro...
متن کاملThe enumeration of fully commutative affine permutations
We give a generating function for the fully commutative affine permutations enumerated by rank and Coxeter length, extending formulas due to Stembridge and Barcucci–Del Lungo–Pergola–Pinzani. For fixed rank, the length generating functions have coefficients that are periodic with period dividing the rank. In the course of proving these formulas, we obtain results that elucidate the structure of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 2006
ISSN: 0097-3165
DOI: 10.1016/j.jcta.2005.04.007